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1. INTRODUCTION

There is presently a widespread interest in expert system shells. In a survey of tool

vendors, the Applied Artificial Intelligence Reporter found that in addition to the seven

thousand expert systems already under development, six thousand new systems will be

begun this year (Anon, 1987). While it should be noted that these figures are probably

more indicative of the number of development tools sold than the number of systems under

active development, there is little denying that the number of tool applications is increasing

rapidly.

The first successful expert systems, such as the medical diagnostic programs

MYCIN (Shortliffe, 1976) and CASNET (Weiss, 1978), demonstrated that a program

consisting of a large body of structured information about a domain, along with a strategy

for reasoning with this information, could solve domain specific problems as well as an

expert in the field. Following their development, work was undertaken to encapsulate the

principles which had been used to represent and apply knowledge in programs, or shells,

which would be generalizable to other problem domains. The programs which resulted

were EMYCIN (van Melle, 1979) and EXPERT (Weiss, 1979). These programs spawned

the current proliferation of expert system development tools, which range from integrated

software and hardware LISP environments to complete, implemented expert system shells

which lack only the domain specific knowledge. These shells are largely based on some

combination of the same few knowledge representation principles; differences between

them lie mainly in implementation and the way the system is interfaced to the person who

will use the tool to build an expert system. Yet there is some uncertainty as to when this

methodology is preferable to traditional programming methods, and as to how well these

expert system principles as they are embodied in va, -,is tools may be applied to diverse,

complex real world problems. This report reviews current expert system methodology,

describes attempts to fit the expert system shells S. 1 and RuleMaster to substantial military

applications, discusses the viability of expert system shells for diverse applications, and

makes recommendations for overcoming the shortcomings of commercial shells.
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2. CURRENT EXPERT SYSTEM METHODS

Expert systems traditionally consist of three parts: the knowledge base, the

inference engine, and the user interface. The user interface determines how the builder and

user of the system will interact conceptually with the system. Although in code it

commonly comprises the largest part of the system (Bobrow, 1986), it is the other two

parts that do the deductive work of the system.

The knowledge base consists of a body of knowledge about a given problem

domain, coded according to one or more of the dominant schemes for representing
knowledge. The primary methods of representing knowledge are rules, frames, semantic

nets, objects, and logic. The inference engine is a domain independent strategy for

manipulating information in these representations.

2.1 RULE-BASED SYSTEMS

Rule-based systems generally follow the production system format (Nilsson,

1980). In its simplest form, a production system consists of (1) a number of if-then rules

each consisting of an antecedent (if) and an action (then), (2) a state, or set of affirmations

about the current status of the problem domain, and (3) a control strategy. If condition(s)
in the antecedent of a production are true with respect to the state, then the action may be

taken. The action causes changes in the state. Then, the next rule with a true antecedent is
fired, and so on, until a desired state is achieved. This is known as forward chaining:

inference begins with an antecedent and ends with an action. A production system can also

be backward chaining: a conclusion is posited, and a rule with a matching conclusion is
found. The truth of the antecedent of that rule is tested. If it is true, the truth of the posited

conclusion is affirmed. Determining the truth of the antecedent may require treating it (or
part of it) as another conclusion and searching for a matching rule again, thus chaining

backwards from conclusions to antecedents until a true antecedent is encountered.

In systems with a vast array of rules, it may be inefficient to simply search for the next

rule with a true antecedent; moreover, when the antecedents of more than one rule are true,

there must be some method to choose among them. These issues are addressed in the

control strategy. The latter issue is called conflict resolution (Michaelson, 1985). Example

search strategies are to search only a subset of the rules for one to fire, and for each fired

rule to specify the rules to fire next. A common conflict resolution strategy is to choose the

rule that most (or least) recently became true.
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The domain-specific rules, or those which pertain to the problem domain, are

combined with declarations about the problem domain, or rules without an "if" side, to
form the knowledge base. They describe a particular domain and are not transferable to

other domains. The control strategy will include the means for forward chaining or

backward chaining (or both). It may also contain meta-rules to guide rule selection and

conflict resolution. In theory, the control strategy is the domain-independent knowledge,
an abstract method of rule-based deduction, which can be applied to different knowledge

bases for difterent domains. This control mechanism is the inference engine in rule-based

expert system shells. The inferencing to be modeled in large expert systems can be quite

convoluted, necessitating the addition of heuristic meta-rules or special control functions,
with the effect that some domain knowledge is implicit in the inference engine. The

resulting control strategy is often not generalizable to other applications. That is why, as
we shall see, the inference engines in rule-based expert system shells tend to involve fairly

simple strategies.

2.2 FRAME-BASED SYSTEMS

A frame is the unit of information in the frame knowledge representation scheme.

A frame represents an object with a list of the object's attributes (Minsky, 1975). A

primary feature of frame systems is inheritance. An example will help demonstrate how
inheritance works: suppose a frame to represent the object "car", with one of its attributes

being "wheels". The value of this attribute is four. Now suppose another frame for the
object "Chevrolet". One of the attributes of "Chevrolet" is that it is an instance of the class
"car". Thus, by default, the frame "Chevrolet" inherits for its attribute "wheels" the
value 4. In like manner, if the value for one of the attributes of "car" had not been

specified, it would be possible to check the value of the attribute for "Chevrolet" or any

other instance of car for an example value (in some inheritance schemes, only the attributes

are inherited, not the values of the attributes (Mettrey, 1987)). Inheritance allows the
identity and class of objects, as well as the values of their attributcs, to be inferred (Rich,

1983).

Abduction is another strategy for classification with frames (Ramsey, 1986).

Hypotheses, or frames from the knowledge base, are proposed to account for the presence

of the attributes (or values of the attributes) of a particular object. Then the ability of each
hypothesis to account for the attributes of the object is tested by searching for a match (or

connection) between the attributes of the hypothesized frame and the object. This may
4



produce a classification, or more hypotheses, with the intended result that a sufficient

match is eventually found.

Semantic nets are similar to frame systems, the difference being that connections

between objects in semantic nets can be of any kind, rather than merely instantiation. An

example is PROTOS (Porter, 1986), a learning diagnostic expert system which represents

types of maladies with category frames and particular cases with exemplar frames.
Attributes, or features, of the categories and exemplars are also represented by frames, and

may themselves constitute categories. There are several kinds of connections between
exemplars, categories, and features, such as "causes" and "is a function of". Protos

reasons abductively. A new case is represented by a frame. If a suitable chain of

connections between the features of the new case and those of a category or exemplar can

be found, the category (or the category to which the exemplar belongs) is determined to be

the diagnosis.

The inference engine of frame-based expert system shells employs techniques such

as these. Also included with the system are templates for creating frames. The domain

dependent part of a frame-based system is the collection of frames representing the objects

of interest in the domain and the connections between them.

2.3 OBJECT-ORIENTED SYSTEMS

The object-oriented approach is also similar to the frame representation scheme

(Klahr, 1980). Objects are represented by frame-like structures, and are organized

hierarchically. In addition to attributes, these frames may also contain methods

(procedures), which may be inherited. Objects are able to send messages to each other.

When an object receives a message, one of the object's methods is activated. Object-

oriented programming is not limited to expert systems, but it has been employed as a
knowledge representation technique to portray complex interactions between entities in a

domain. It is a feature of some shells, such as Art and KEE (Mettrey, 1987).
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2.4 LOGIC PROGRAMMING

Logicians have long rendered propositions about the world in a formal language.
They are able to use logical rules of inference to prove these propositions. However, the
variability of these rules made their use in a computer program impractical. With the

introduction of resolution (Robinson, 1965), a single, powerful inference method became
available which was viable for implementation. This method is used by the Prolog
programming language interpreter. Knowledge in Prolog is represented by logical
predicates and conditionals, which resemble if-then rules in form. Prolog is in effect a

backwards chaining inference engine (Cohen, 1985).

2.5 IMPLEMENTATION LEVEL

Another way of classifying expert system development is described by Bobrow
et al. (Bobrow, 1986). "The low road approach" refers to direct programming, usually in
Lisp or Prolog. It employs an integrated Al programming environment, where the program
may be easily developed as it is conceived. The high road approach incorporates an
extensive explicitly represented knowledge about the subject matter which can be used for

mort, than one purpose. This method is often referred to as "deep reasoning" (Hayes-Roth,
1984); it involves reasoning from knowledge of the underlying principles and
characteristics of the subject matter using causal models, categories, abstractions, and

analogies (Michaelson, 1985). Consequently, long inference chains are required to achieve
practical results. Deep representations typically employ large networks of frames. This
type of system is sometimes too slow and incremental for practical use.

Middle road systems lie between the two above approaches. They also involve

explicit representation of knowledge about the problem domain, but are more concerned
with practicality and efficiency than with completeness, and use canned representations and

procedures which support heuristic problem solving. This approach uses surface
representation -- rules which capture only the amount of information about the subject

matter needed for practical purposes. Most expert systems developed using shells fall into
this category, though it is possible to use the knowledge representation capabilities of some

shells to build large, deep representations.
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3. CHOOSING A SHELL

Which approach is right for a given problem? It is usually not the case that only one

approach will work, though one may be a better choice than others. Niwa, Sasaki, and
Ihara (Niwa, 1984) report a comparison of four pilot expert systems to solve the problem

of risk management for large construction projects. The systems were a simple rule-based

deduction system, a structured rule-based system (rules were grouped according to

temporal order), a frame-based system (employing inheritance), and a logic-based system.
While more difficult to implement, both the frame-based and structured rule-based systems

offered significantly better efficiency than the other two. Comparing a rule-based and a

frame-based system for aiding in software engineering management tasks, Ramsey

(Ramsey, 1986) found that the two systems performed moderately well, but concluded

that the frame-based system was less appropriate since the software engineering field is ill-

defined and involves many uncertain relationships.

Rule-based and frame-based systems have their different strengths and weaknesses.

Rule-based systems tend to be better for quick-and-dirty solutions to smaller problems. It
is usually easier to add or subtract rules from a knowledge base than frames (with their

connections to other frames in the knowledge base). Rules are a good choice when the
knowledge base lacks structure. Rules are also indicated when the knowledge already

exists as rules or in a table format; the type of classification is primarily categorical.

Frame-based systems are especially apt at representing knowledge about numerous

entities with well understood, complex relationships. Any application which will need to

reason in flexible ways using deep reasoning about the domain is best implemented with a
frame-based representation. Frames are also appropriate for knowledge that exists in a

descriptive format such as in a textbook or as a single interconnected process, or for
problems with multiple simultaneous outcomes (such as competing diagnoses) (Ramsey,

1986).

In deciding if there is a shell which is suitable for a particular problem, one should

note that some shells attempt to incorporate more than one approach for representing and
inferring from knowledge (Takenouchi, 1987; Fikes, 1985). This is especially true of the

larger, substantially more expensive packages, such as Art, S. 1, and KEE (Mettery, 1987).
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However, it may be difficult to justify the high cost of these systems if they are still

insufficiently flexible to handle a large complex application or a variety of different

applications. This point will be addressed at greater length in a following section.

3.1 IS AN EXPERT SYSTEM NECESSARY?

Before deciding if any given expert system shell is adequate for our needs, it would

be wise to ask an all-to-often unasked question: is an expert system really needed?

"High-level" expert performance can be produced without an expert system as in

the case of an auto-pilot (Shore, 1985). One may wonder whether a compiler or a payroll
program constitutes an expert system. Knowledge exists in both, of a language and a

computer in the former and of accounting and taxes in the litter. These systems could be
built as expert systems. The choice of implementation in this case depends on their

function: when built using conventional algorithmic techniques, the programs perform a

specific, non-flexible task very efficiently. If they were implemented as expert systems,
they would include bodies of knowledge which could be used for different purposes, such
as answering different questions about the subject matter (Bobrow, 1986).
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4. CASE STUDY: S.1

In order to better appreciate which kinds of problem demand an expert system

approach and which kind are better handled with traditional techniques, as well as how a
shell might expedite expert system development, researchers at Applied Research

Laboratories attempted to construct an expert system to solve a complex vehicle pathing

problem using the development tool S. 1.

4.1 THE S.1 TOOL

S. 1 is an expert system shell which supports the use of frames, with inheritance
and rules. It uses a backward chaining control strategy for inferencing with rules. The

inheritance feature allows inheritance of frame attributes only; it does not allow inheritance

of the attributes' values. Each attribute may include a certainty factor. S.I also supports a

Pascal-like language, which can be used to create objects and assign values to their

attributes, or to initiate backward chaining. Single integer or character values can be passed
to external C functions, as wcll as a set containing the attribute values and certainty factors

of a particular frame. This set cannot be passed into the shell, however. S.1 is

implemented in C (Teknowledge, 1985).

4.2 THE PROBLEM

The pathing problem consists of determining a best path to a designated target for a

ship-fired missile. The missile receives its guidance instructions from the operator on

board the ship before launch. The missile then makes prescribed changes in its direction at

preset points, called "waypoints". Path rating criteria are the length of the path and the

amount of "threat" the missile is exposed to. The missile must avoid hostile and friendly

ships en route to the destination. The precise location of some ships is not known; rather,
they are assigned an area of uncertainty (AOU). Threat is accumulated as the missile

travels through one of these areas, depending on characteristics of the ship and the AOU.

Waypoints are selected at or near the limit of the ship's AOUs, and ship's move in time.

Thus, each waypoint would only be determined after the previous one (and its concomitant

time of arrival) had been selected. Only 'hen could the locations of ships be predicted in the

selection of the next waypoints.

Selecting paths for multiple missiles launched from different platforms with a

common target and arrival time in a crowded field of view is a highly complex task, and
9



difficult (if not impossible) for shipboard operators to do. It was felt that a knowledge-

based system might have the capacity to accommodate the complex and constantly changing

conditions, choose satisfactory waypoints, and thus arrive at the optimal paths. In this

sense the system would be responding intelligently to a situation, so the problem seemed a

good candidate for an expert system. To begin, the problem was reduced to finding a path

for a single missile.

However, because no decisions were required which depended on uncertain or

ambiguous knowledge, and no large body of knowledge had to be consulted at any single

step, it was found that a combination of a heuristic search algorithm (a variant of the A*

algorithm), combined with traditional number crunching, provided an optimal pathing

solution. The key point to be made here is that there was always, at each stage in the

process, one clearly correct answer- the path-so-far combined with the best next path

segment, and it was determined using mathematics and an invariant algorithm. It was

possible to code this procedure in a traditional procedural manner. At each stage, the

mathematical tests to apply were immediately available as successive components of the

algorithm. No searching for the next decision rule was involved.

The frame feature of S. 1 proved to be a convenient way to represent the missile and

the various kinds of ships; the inheritance feature made it possible to designate, for

example, a specific battleship, which would then inherit all of a battleship's features.

Inheritance was not used in any inferential way, however. Nor were any rule-based

inference methods used, since no rules were implemented.

S.1 features the ability to interface to external C functions. After an initial

implementation incorporating some rules for pathing failed inexplicably to execute

properly, the pathing functions were written in external functions. Execution of the S.1

shell was initiated; it then called the external functions to determine the best path for a given

scenario. A problem was encountered in attempting to reference the same complex data

object inside and outside the system (i.e., ships). Internally to S.1 the objects were

implemented as frames; externally they were dealt with as C structures. It was necessary to

disassemble each object and pass the simple data it was composed of through the interface,

and then reconstruct the object on the other ,ide of the interface. The severity of these

problems was not revealed until implementation of the system was underway, possibly

because it was not anticipated that the majority of the algorithm would exist outside the

shell. This underlines a potential difficulty in using a pre-constructed expert system shell

for which the source code is not available (a closed shell): if the system is unable to
10



perform a needed task, or if the system has a bug, it is not possible to make corrective

changes to the program.

After it became obvious that an expert system was not the best solution to the

problem, plans to do pathing for multiple missiles were abandoned. However, the

experience did suggest some conditions for which an expert system would be more

appropriate: if the number of criteria for the determination of best path was greatly
increased, efficiency considerations might dictate an "expert", heuristic handling of this
knowledge. And if a large amount of symbolic knowledge concerning high-level tactics or

strategy were involved, which could not be reduced to mathematical operations, an expert

system would be indicated.

In Building Expert Systems, Stefik et al. (1983) list the kinds of tasks performed

by experts which are suitable for implementation as expert systems: interpretation,

diagnosis, monitoring, prediction, planning, and design. Characteristics common to all of
these tasks are large solution spaces, tentative reasoning, time-varying data, and noisy data.
Michaelson et al. note that experts "typically solve problems that are unstructured and ill-

defined, usually in a setting that involves diagnosis or planning. They cope with this lack

of structure by employing heuristics, which are the rules of thumb which people use when

a lack of time or understanding prevents an analysis of all the parameters involved."
(Michaelson, 1983, p. 303). Expert systems are best suited to problems for which a

correct solution is not immediately available, where no clear solution is easily available, and

a large body of knowledge must be searched heuristically for a reasonably good answer.

Although for a human operator the missile pathing problem appears as a large, unstructured
problem, when the problem is subjected to analyses, a clear, very highly structured, and

unambiguous solution of the problem was discovered. Aside from the heuristic function

employed by the A* algorithm (a heuristic estimate of the quality of a segment of the
missile's path), no heuristics were needed. It did not appear that if the problem were

expanded to pathing for multiple missiles, the balancing of data about the multiple paths
would have been sufficiently difficult to require an expert system.

The most irr ortant point here is that an expert system is generally (most)

appropriate when, fc_ h, especially heuristic search, of a large knowledge base is required.

This may be due to the fact that the domain knowledge involved lacks structure or

definition. However, . other cases, the knowledge may be precise and well structured,

but in such large quantity that searching it exhaustively for the single best answer is too

inefficient to be practical.
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Another indicator that an expert system is needed is the symbolic nature of the

knowledge base (Brachman, 1984). This will usually be the case when the knowledge is

acquired from an expert. Expert systems are a member of the class of AI programs called
"physical symbol systems" (Newell, 1962). They allow the knowledge of the expert to be

represented symbolically. In this regard the symbol-manipulating character of Lisp

contributed to the conception of expert systems.
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5. CASE STUDY: RULEMASTER

5.1 RULEMASTER

RuleMaster, a product of Radian Corporation, is a rule-based expert system shell

written in C. Rules are entered in templates called induction modules. These modules

consist of a conditions section, where the parameters of the rule's antecedent are entered

along with their possible values; an actions section, for listing the actions to be taken as a

result of various rule outcomes; and an examples section, in which the various

combinations of values for the parameters are paired with the appropriate actions. With

each parameter, or condition, the method for determining the value of the parameter is

specified (such as asking the user for a value or designating another rule module to execute

which will return a value for the parameter). The actions taken might include advising the

user of a solution, or the execution of other modules. One module serves as the root

module, and from each module a tree of modules may extend down from any of its

antecedent parameters (for use in determining the value of the parameter) or from any of the

actions in its action section. Variables may be passed between calling and called modules.

Execution halts when any rule advises the user of a solution.

The rules in the modules are compiled into Radial, a Pascal-like language, which

may be then compiled into C. The system builder may program directly in Radial (in a

Radial module) when a mathematical or other non-rule procedure is needed. Radial

supports integer, floating point, and string data types, as well as arrays. A record-like data

structure may be put in a special storage module, which is then accessed like a Pascal

record. In addition, RuleMaster can interface to external C data structures and functions

through special modules.

RuleMaster uses a very simple inferencing strategy: each rule designates which

other rules are to be tested if it "fires". These are the other rule modules specified in the

action section. Also, the determination of a value for a condition may require the execution

of a designated rule module. Ibis constitutes a simple forward and backward chaining

strategy in which no search for rules is required. As a simple example, a rule for

determining the weather forecast might have the parameters humidity, temperature, and

sky. The humidity parameter might be integer values, or symbolic values like "rising" or

"dropping". The temperature parameter could also be of either variety. The sky parameter

might have values like "cloudy", "clear", etc. The value of these parameters might be

determined by querying the user (the possible values to choose from are supplied),
13



specifying another rule to execute, or specifying a Radial module to execute. For example,

the value of humidity might be determined to be "rising" by executing a Radial module

which queries the user for the current humidity and compares it to a previous value, then

returns the value "rising". The rule module's examples section would contain all the

possible combinations of values for these parameters. For the combination "humidity:

rising, temperature: 47, sky: cloudy", the corresponding action might be to advise the user

"it will rain," or to execute a rule module which will determine some response to be taken

or will further analyze the weather situation.

The user interface, consisting of the rule-inducer, the template used for creating

rules, Inded (the rule module editor), Sysed (an editor for manipulating the hierarchical

structure of modules), module testing functions, and compilation features, comprises the

bulk of RuleMaster. This interface proved to be an effective way to enter rules when a

small auto fuel system diagnostic tool was created. The values of all of the parameters in

that system were determined by querying the user.

5.2 THE PROBLEM

As a further investigation of expert system shell utility, the shell RuleMaster was

applied to the problem of casualty assessment in battle simulations. The intention was to

replace the casualty assessment portion of an existing system, the automatic data collection

system (ADCS), with an expert system built using the shell. One of the perceived benefits

of implementing ADCS as an expert system was the ability to easily change the method of

casualty assessment by adding or subtracting rules. Also, RuleMaster features the ability to

induce rules from examples, and then produce the rules as C code. It was hoped that this

might make acquisition and implementation of casualty assessment rules easier. Finally, a

characteristic of the ADCS program is constant monitoring of all the participants in the

battle simulation. A valuable addition to the system would be the capability to replace the

adversary force with an intelligent scenario generator, which would have the ability to

respond dynamically to actions of the force in training. Even if the simulated scenario were

limited to small portions of the total battle simulation, the savings in manpower would be

substantial. Additionally, different responses to the same battle scenario could be

compared. The preliminary design called for the use of rules to embody standard tactical

responses to the actions of the training force in the ongoing simulation.

The ADCS node to be replaced, the realtime casualty assessment (RT) node,

performs two primary functions: keeping track of the position and status of each
14



participant, and determining the outcome of engagements. It can keep track of up to

200 participants, which are equipped with lasers to simulate weapon firing and sensors to

detect a hit. The ADCS system polls all of the participants in each 3 second interval. When

a participant returns a message that it has fired or that it has been hit (with the identification

number of the platform that hit it), this information is stored for a certain number of cycles,

and an attempt is made to match fire and hit messages. When a match is made, an analysis

of the encounter is made to determine the result of the encounter, which is broadcast back

to the involved platforms in the next polling cycle. Three tables provide the probability of
kill for various combinations of weapons and platforms at various distances.

When an attempt was made to apply the shell to the ADCS problem, several

incompatibilities were discovered. In the ADCS system several enumerated typec were
used for such things as vehicle type. Enumerated types were not available in the Radial

language. In addition, the numoer of array dimensions that could be handled was

ambiguous. Although a multi-dimensional array would have been a good way to combine

the various tables used to assess engagement outcome, each two-by-two table was

eventually entered as a record module with several single dimension arrays. No facility is
provided with RuleMaster for loading external data into internal representations; it would

have been necessary to build such a mechanism in an external C function, and pass each

value into an interface module, which would be used by a Radial module to put the value

into the data structure. A list data type was used in the ADCS system, but although

RuleMaster provides a simple list-handling capability, it was unable to manipulate the list

adequately. Another problem encountered is similar to S.1ls inability to pass complex data

types through the interface: the modules through which RuleMaster interfaced to external C

functions could only pass integers, strings, and floating point values. Thus the elements of
arrays, as well as the fields in record modules, would need to be extracted from their data

structures before they could be passed to or accessed by external C functions. Similarly,
no complex data structure existing externally could be referenced from within any

RuleMaster modules.

One of the data structures used heavily in the ADCS RT node was a linked list of

records. Since RuleMaster has no record pointer facility which will support linked lists, it
was not possible to represent this data structure in RuleMaster. Instead, an array of records

was attempted. Each record represented an encounter in which a particular vehicle had

been engaged, and included integer and string fields. The array of these records

represented all of the unresolved encounters this vehicle had been involved in. This array
was a field within another record, which represented all pertinent information about a
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vehicle, including the array of encounters, as well as its type, the type of weapons it

carried, its ID number, and so on. In the original implementation, this larger record

contained fields of type integer, string, list, and array, and enumerated types to represent all

of this information. This larger record was itself an element of the array of all two hundred

of the weapon platforms. The construction of or limitations on complex data structures like

this was not discussed in the RuleMaster manual. After an implementation was attempted

(the syntax of which was derived largely through guess work since the manual did not

mention it) it was confirmed that RuleMaster does not support data types with this degree

of complexity. It would allow a field of a record module to be an array of simple integer or

string elements, and it would support an array of records, but none of the fields of the

records could be an array. Only after the package had been acquired was it discovered that

the manual did not address many of these issues and limitations. It was only through the

excellent user support provided by Radian that these problems were discovered to be

results of the system's design, rather than syntactical or other errors on the part of the user.

Were it not for this support, a considerable amount of time might have been wasted in

trying to adapt an inappropriate solution to the problem.

As it turned out, re-implementation of the RT node using RuleMaster would have

largely consisted of functions and structures external to RuleMaster. Much of this external

code and the code internal to RuleMaster would have served the purpose of overcoming the

inadequacies of RuleMaster for the problem at hand, such as decomposing complex

abstract data types to be passed into RuleMaster, or the extraction of data from tables to be

passed as simple values into RuleMaster. This amount of compensation for the tool

seemed inordinate to the benefits to be gained -- a very simple (and unalterable) inferencing

strategy, rule induction, and the user interface. Thus it was decided that RuleMaster was
not suitable for the ADCS application.
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6. LIMITATIONS OF EXPERT SYSTEM SHELLS

6.1 CONSIDERATIONS FOR ACQUISITION OF A SHELL

Implicit in the fact that many vendors supply expert system tools without the source

code is the belief that prefabricated expert system designs will be applicable to a variety of
problems. Doubtless there are many applications for which the shells discussed above are

a good "fit". However, as has been demonstrated, this is not always the case. Since

expert systems are relatively new, the degree of sophistication necessary to judge the

quality of fit between a shell and a problem is not yet widespread. Unfortunately, many

purchasers of shells are likely to discover a mismatch through experience. In each of these
instances, if the shell is a closed system (the source code is not provided), it represents a

wasted investment.

The appeal of expert system shells, with their often touted "instant usability", is

especially strong for organizations in which there is a desire to infuse expert system

technology into their operations while avoiding both the cost of hiring experienced

knowledge engineers and the delay inherent in developing the requisite Al skills internally.

It is for just these parties that choosing an expert system shell can be a risky proposition.

Our experience indicates that making this choice without an understanding of expert system

principles born of experience can amount to a (perhaps unavoidable) shot in the dark. The

notion that an expert system shell will allow one to build an expert system without a solid

grounding in the principles of their operation can lead to disillusionment. While

uncomplicated applications will exist which are fortuitously well handled by the chosen

shell, it is possible that the purchaser will find himself with a solution which he cannot

apply to his problem. If the problem is very involved, it is likely that the person building

the system will end up devoting substantial effort to learning expert system concepts before

a working expert system is produced. In comparing the learning that will be necessary for

persons of differing experience, it becomes apparent that the abovementioned organizations

should (not surprisingly) be prepared to either hire an experienced professional or devote

the time necessary to develop the skills through study and experimentation. As is

demonstrated in the above examples, applying an expert system shell can require an

understanding of traditional data structures and algorithms. Assessing which knowledge

representation scheme or inference strategy is appropriate for a task requires an

understanding of expert system methods. Also, each shell has its own characteristics and

features which will need to be learned, such as the rule templates and Radial language in
RuleMaster, and the Pascal-like language, frame format, interfacing procedures, and
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particular inheritance scheme of S. 1. The less experience one has with expert system

principles, the more difficult this will be.

A seasoned programmer has a wealth of knowledge about data structures and

algorithms which he uses to design solutions to problems. This collection of programnng

tools has been augmented with the advent of expert system technology. However, in an

attempt to make this new technology available to the uninitiated, as well as to make its

application quicker and simpler by providing preconstructed algorithms, expert system

shell vendors have created tools which by their prepackaged nature restrict not only the

expert system technology which may be brought to bear (witness the simple inference

strategies available with most shells (NASA; 1987, Teknowledge, 1985)), but also the

traditional programming methods which may be employed. In straightforward problems

such as the auto fuel system diagnosis program described earlier, which merely asked the

user to choose among a few options at each stage, this might not present a problem.

However, few programmers facing a complex, multi-system problem would attempt to

apply a data structure or algorithm written by someone who had never seen the problem.

The larger, more expensive shells like Art and KEE offer more inferencing and knowledge
representation methods than RuleMaster, but should the purchaser feel secure with the far

greater expenditure? Will he encounter the same restrictions on his ability to properly

address a problem? This depends on the problems he will be attempting to solve. Only if

the purchaser knows in advance what problems the shell will be used for, and is able to

evaluate the fit of each problem to the shell, can he be assured of having his needs met.

Recently, Frederick Hayes-Roth, the founder of Teknowledge, was interviewed in

Expert Systems. Teknowledge is the company from which S. 1 is available; it also delivers

finished expert systems. The likelihood of encountering problems for which even the

larger expert system tools such as S.1 are inadequate may be better appreciated by

examining some excerpts from the interview:

ES: Have you established an in-house methodology yet?

FH-R: Yes, for applications which are structured selection-type

applications that can be done very effectively with our own commercial

tools.. .We subscribe to the theory that it's a new field but it does work.

There are hundreds of things to apply it to and many of them are very

valuable. Therefore it's easy to find good uses for it with moderate to high

return and low risk.
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ES: Do you find people come to you with projects they want to do

that do not fit the kind of return and risk ratios you like to see?

FH-R: For a significant percentage -- probably more than 10 and

less than 50% -- of all the problems people present to us, we recommend

that they defer it or that they consider it as a research problem as opposed to

a development problem. (Anon, 1987).

The literature offers other evidence that problems will be encountered for which a

shell may not be appropriate. The symbolic-type processing of the shell often requires

augmentation with procedural and numeric computation. Kitzmiller and Kowalik discuss

the merging of numeric and symbolic processes in "coupled" systems:

Often, there is no choice. Separately, neither symbolic nor numeric

computing can successfully address all problems in design and analysis.

Complex problems such as the control of a fully autonomous robot or the

design of an aircraft cannot be solved by purely symbolic or numeric

techniques. In such cases, a mix of numeric and symbolic techniques is

needed to obtain a solution. (Kitzmiller, 1987)

It has already been shown that effecting a smooth marriage between large number

crunching processes and the symbolic inferencing processes of both S.1 and RuleMaster

can be difficult, if not counterproductive.

Further examples of system needs that might not be adequately addressed by an

expert system shell are discussed below.

6.2 FLEXIBILITY IN PURSUING DIFFERENT APPROACHES IN AN

INTEGRATED SYSTEM

Examples of problems that may be solved using more than one representation

scheme have already been discussed. For some large applications, the scheme that is most

appropriate might vary depending on the desired capabilities of the system. Gilmore

reports the separate development of target recognition systems by Hughes Aircraft and

Martin Marietta Aerospace (Gilmore, 1985). Hughes produced an object-oriented system

which incorporated a spatial blac, board, and groups of model objects in a semantic frame

hierarchy. Target recognition was accomplished through abductive classification of

objects, using a manner similar to the one used by Protos. Martin Marietta chose to
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integrate the intelligent part of the system with additional algorithms for global region
classification, motion target identification, passive ranging, and advanced object
recognition. Along with ancillary data such as digitized maps, time of day, and weather

conditions, these algorithms produce input for the expert system portion: a rule based
system which assesses the positive and negative contextual evidence for identification.
This system provides extensive processing before the expert system is invoked which is
not done in the Hughes system. Were an attempt made to solve these problems using

shells, considerably more external programming would be required for the latter approach.
In the latter case, interfacing a closed shell effectively to all of the various additional

algorithms would have been difficult if not impossible. The shells would have different
knowledge representation requirements as well. More importantly, had the systems been

developed sequentially, using closed shells, by the same organization, it is entirely possible
that the shell chosen for the first project would not be suitable for the second one, a fact
which might become apparent only after the shell used for the first one were applied to the
second. The knowledge representation and interface characteristics of the shell can impose

severe limitations on how much a system can be enhanced or altered to meet new

requirements.

6.3 ECONOMICAL SOLUTION OF MULTIPLE PROBLEMS

Here some monetary consequences of the preceding problem are emphasized.

Cupello, with Morton Thiokal, and Mischelvich, a consultant with Intellicorp, relate their

experiences with developing an expert system using a large ..ommercial shell (Cupello,
1988). The total project cost was $206,000. Of that total, $40,000 was paid for the shell

(KEE, a Lisp based shell), $65,000 was devoted to the purchase of two Lisp mac.hines,
and another $70,000 went toward training, consultation, and education. A major share of

the latter expense was devoted to learning the expert system tool used. The focus of the

article was the managing of a first expert system project in a large corporation for the
purpose of acquiring expert system technology. No description of the shell, the

application, or the finished system is given.

The authors completely fail to address the fact that over $100,000 -- more than 50%

of the project cost -- was committed to learning and incorporating expert system technology
in such a way that actually limited the company's ability to apply it. It committed the

company to a choice of attempting to apply the same expert system approach (shell,
hardware, training, and consultant) to all subsequent expert system problems or incurring a
major expense in acquiring or developing a different approach. The implicit assumption
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seems to be that the shell invested in will be adequate for all problems; this is highly

questionable. In fact, Art and S.1, two of the larger shells, have been recently

implemented in C in response to a demand for faster-executing expert systems. Further, it

is assumed that the system developed was not intended for wide-spread distribution or

marketing; otherwise the authors would certainly have addressed the portability problems

inherent in their approach: each system would require its own Lisp environment, probably

a Lisp machine. These considerations, along with previous evidence presented, make a

large financial commitment to a closed shell for a single application appear ludicrous,

especially in light of the small percentage of "finished" expert systems that actually find

their way into daily usage (Van De Reit, 1987). In fact, Cupello and Mischelvich do not

mention whether their system is in use.

6.4 THE ABILITY TO INTERFACE TO DATABASE MANAGEMENT

SYSTEMS

Recently, the integration of expert systems with database management systems has

become a topic of interest (Al-Zobaide, 1987). There is a basic structural incompatibility

between the two, since database management systems (DBMS) stress syntax over

semantics (structure over meaning) while expert systems do just the opposite (Schar,

1988). Any application which depends on data residing on online secondary storage,

rather than just user- or sensor-supplied data, is a candidate for an integrated expert system

and DBMS. However, the number of expert system shells with the capability to interface

to a DBMS is small. These can only interface to one or a few specific DBMSs. In the

event that this emerging methodology is deemed most appropriate for an organization's

long-term needs, and a decision is made to purchase one of these systems, the limitations

of the requisite DBMS must be endured as well as the limitations of the expert system shell.

6.5 THE ABILITY TO WORK IN REALTIME

There is a trend towards applying expert system technology to dynamic processes.

In a review of realtime knowledge based systems, Laffey et al. (Laffey, 1988) note that

"The increasing complexity Iof realtime computer systems] has caused considerable interest

in the use of knowledge-based techniques for realtime applications." Among the candidate

applications they cite are satellite control, the Pilot's associate, battle management,

communications network monitoring and control, and process control. These problems

demand an array of special capabilities. Several system requirements are mentioned,

including nonmonoticity (changing data input), interface to external environment (gathering
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data from sensors rather than querying the operator), temporal reasoning, and integration

with procedural components (which will perform such tasks as data compression, signal

processing, and feature extraction). Requirements such as these compound the problem of

choosing a shell. It is not surprising that of 38 systems Laffey described, only ten were

developed with the aid of expert system development tools, of which one was modified and

one was declared inadequate.

6.6 THE ABILITY TO HANDLE COMPLEX MILITARY

APPLICATIONS

Traditional expert system inferencing techniques are unable to cope with the

complexity of military scenarios with sufficient speed, even on high-speed processors.
Researchers are developing shells with new inference strategies and search techniques in

order to avoid the unacceptable limitations on knowledge base size and to better incorporate

the problem solving paradigms underlying military decision making (Sorrells, 1985).
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7. DISCUSSION

What advice can be drawn from these observations? There are several things to

consider before committing oneself to any closed expert system shell. First, expert system

methodology must be well understood. Only then can an analysis of a problem be done to

determine whether it is appropriate for an expert system, and what methods are required for

its solution. Evcn if it is then determined that a given shell has the capabilities needed,

caution is advised; remember the specification uncertainty principle:

System requirements cannot ever be stated fully in advance, not even in

principle, because the user doesn't know them in advance - not even in

principle. To assert otherwise is to ignore the fact that the development process

itself changes the user's perceptions of what is possible, increases his or her

insights into the application environment, and indeed often changes that

environment itself. We suggest an analogy with the Heisenberg Uncertainty

Principle: any system development activity inevitably changes the environment

out of which the need for the system arose (McGracken, 1982, quoted in

Kornell, 1987).

Design changes may become desirable during development, but a closed shell may not

permit them, since it cannot be altered.

Second, even if it appears that the shell is a good choice for a problem, the

requirements of future applications should be taken into account, unless one is willing to

absorb the expense in "retooling" for each new application. If the shell under consideration

is one of the larger tools, such as Art or KEE, chances are better that it will be suited to

subsequent applications. However, the expense (including consulting fees, time spent

learning the system, etc.) is much greater, and the system might still be inadequate for

some applications. This is most likely if future problems will involve realtime performance

requirements, military applications, integration with elaborate external procedural

components, or very convoluted inference strategies.

Much of the time saved by purchasing a "complete" shell is realizable only when

additional money is spent to hire an expert systems professional or for the services of a

consultant. The primary advantages gained with either of these options are an

understanding of what problems are best solved with expert systems, and the experience to

know what tool satisfies the problem's requirements and how to apply the proper methods
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to a problem. Without this help, even if time is not wasted applying a shell to a problem

not suitable for an expert system, or applying the shell to a problem not suited for that

particular system, time will be spent learning the basic principles of the shell. Time will

also be spent learning any other shells purchased to compensate for the shortcomings of the

first one chosen.

The ideal solution is an expert system tool which will fit any application.

Unfortunately, it is inherent in the nature of a fixed system that it has limitations. One

possible alternative is to acquire a shell for which the source code is available. This open

system could then be altered to fit the requirements of various applications. One such

system is CLIPS, a rule-based expert system shell developed by NASA (NASA, 1987).

CLIPS uses a forward-chaining inference strategy. As rules become true, they are inserted

into a queue. The top-most rule in the queue (the one which has been true the longest) is

always the next one fired. The shortcoming in this approach is that, in some cases, major

changes might be required in the inference strategy, possibly necessitating a virtual rewrite

of the entire inference engine. This might also be the case if another knowledge

representation strategy, such as frames, is required. It is probably safe to say that this is a

more viable approach than purchasing a smaller closed shell, but unless the open shell fits

one's typical requirements closely, this may be as limiting an approach as purchasing a

large shell (though considerably cheaper), due to the limitations of its inference strategy and

knowledge representation scheme.

Another possible approach is to build the expert system from scratch. DENDRAL

(Buchanan, 1969) and MYCIN (Shortliffe, 1976) were built in this manner. The

advantage with this approach is that the finished system will be custom fitted to the

problem. Additionally, the builders of the system will complete the project with a thorough

understanding of expert system design. One problem with this approach is that all of the

code written will be designed as an intrinsic part of the system. It might not be feasible to

reuse any of it for subsequent applications. Another problem is the time it will take to

create the program, since it must be accomplished from scratch. Few expert systems will

be built from scratch. The ones that are will be responses to problems not suitable for

existing shells, produced without intentions of applying the techniques employed to other

problems. Thus these endeavors are likely to be for research purposes only.

A third option is to build one's own shell, making it flexible enough to handle all

anticipated applications. This has not been an uncommon approach of late. Several

attempts have been made to construct shells which either employ what the designer feels are
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the "best" inference and knowledge representation methods, or those that are most suited to

a particular field (Sorrells, 1985; Takenouchi, 1987). Unfortunately, these systems suffer

from the same shortcomings as any other expert system shell: once they are completed,

their limitations are built in.

A fourth alternative may be appropriate when large complex problems, for which

existing shells are inadequate, are the norm: modular and incremental development. If

faced with problems for which expert systems -- or large systems incorporating expert

system methods -- must be built from scratch, an attempt should be made to retain as much

of each system as possible for subsequent use. This is in essence what has happened with

the development of expert system shells. However, commercial shells, as has been

described, are static. They offer a particular set of techniques which cannot be altered. It

would be desirable if the power of the larger systems could be acquired without their

concomitant limitations.

Commercial shell limitations are of two varieties. On one hand, their inference

strategy and knowledge representation scheme are fixed. On the other, the data structures

and procedural programming techniques that can be used in conjunction with them are

limited, thus making it impossible for a programmer to use the conventional methods with

which he normally can address any problem.

In order to best retain the elements of an expert system for use in other expert

systems without incurring any of these limitations, the elements should be modularized

within the system. For example, if a frame-based knowledge representation scheme is

used in a given system, but the system's builder wishes to be able to add the capacity for

rule-based representation in a subsequent system, he must be aware of how the two will

interact and design his inference strategy in an appropriately modular manner. Similarly,

he must not code in restrictions on the type of data structures and procedural algorithms that

can be interfaced if he wishes to be able to merge his tool with procedural programs. As an

example, the part of the inference engine which tests the truth of a rule's antecedent which

states "if the identity of an object is x," should be able to refer to a frame hierarchy

implemented as a complex data structure, or to one of several other rules, to determine

whether the object really is x. The determination of the truth of the antecedent of rules

should also allow involved procedural calculations, and the selection of which of the true

rules will be fired should be determined by any one of several possible plug-in conflict

resolution strategies. These several elements need not be implemented until a problem

demands them, but unless their need was anticipated and their incorporation into the system
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was allowed for in the design of the first-constructed components, it might be difficult to

add them. Thus, only the modular components whose need can be foreseen can be

designed in from the beginning. This is not as limiting as it sounds. For example, if it is

possible to build the system so that it simply sends the numbers of several rules to a

conflict resolution strategy as parameters, receiving the number of the rule to fire in return,

the builder then has few limitations on the design of conflict-resolution strategies which he

might "plug in".

This approach to the problem is, to the author's knowledge, untested. If it can be

accomplished, the effort invested would be most rewarded in an environment in which a
variety of complex applications will be encountered, each having its own requirements,

particularly if the applications require changing or tuning components for efficiency or

incorporating the expert systems into multi-system environments. This approach would be

most applicable for military applications, in a large industrial setting, or as a tool sold or

used by a knowledge engineering firm. It seems a reasonable assumption that the
investigation of this approach is justified by the potential returns, not only with respect to

the increased flexibility afforded the initial builders of such a tool, but also in regard to the

increased expert system building capability that would be disseminated to other users.

Further, if researchers elsewhere developed new methods -- a better strategy for abduction,

for example -- it might be possible to assimilate the new method without rebuilding a major

portion of the system.
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8. CONCLUSION

Until expert system technology is as widely understood as traditional computing

methods, selecting an expert system shell for a first attempt at building an expert system

will be a risky proposition. The degree of risk involved will be influenced by the expense

of the shell and the size of the project, and especially by how well or little expert system
methods are understood by the ones who choose it. Much of this understanding might be

attainable only through experience. For large, complex problems, many shells will be

inadequate. This is an even greater concern if it is desirable to apply the tool to multiple

problems. In this light, it might be advisable to expend the effort to custom build a tool,

with as modular a design as possible. In any event, it is desirable that the fit (or lack of fit)

between any closed expert system shell and a potential application be thoroughly

understood before the shell is chosen for implementation of the expert system.

27



ACKNOWLEDGMENTS

I am indebted to L. Wayne Ashby and David A. Brant for the support and guidance
they have provided during the course of these projects, and for making the undertaking of

this research possible.

I would also like to express my appreciation to Dila Davis for her indispensible and

insightful editorial support.

29



REFERENCES

AI-Zobaide, A., J. B. Grimson (1987). "Expert Systems and Data-Base Systems: How
Can They Serve Each Other?" Expert Systems 4(1), 30-37.

Anonymous (1987). "Expert Systems to Triple in '87," Applied Artificial Intelligence

Reporter 4(3 1-8.

Anonymous (1987). 'Expert System Interview: Dr. Frederick Hayes-Roth," Expert

Systems 4(1), 44-46.

Bobrow, D. G., S. Mittal, M. J. Stefik (1986). "Expert Systems: Perils and Promise,"

Communications of the ACM 29(9), 880-894.

Brachman, R. J., S. Amarel, C. Engelman, R. A. Engelmore, E. A. Feigenbaum, D. E.

Wilkens (1984). "What are Expert Systems?" in Building Expert Systems, F. Hayes-
Roth et al. (Addison-Wesley, Reading, Massachusetts), 31-56.

Buchanan, B. G., G. L. Sutherland, E. A. Feigenbaum (1969). "Heuristic DENDRAL: A

Program for Generating Explanatory Hypotheses in Organic Chemistry," in Machine
Intelligence, Vol. 4, B. Meltzer, D. Michie, eds. (Edinburgh University Press,

Edinburgh), 209-254.

Cohen, J. (1985). "Describing Prolog by its Interpretation and Compilation,"
Communications of the ACM 28(12), 1311-1324.

Cupello, J. M., D. Mishelevich (1988). "Managing Prototype Knowledge/Expert System
Projects," Communications of the ACM 31(5), 534-541.

Fikes, R., T. Kehler (1985). The Role of Frame-Based Representation in Reasoning,"

Communications of the ACM 28(9), 904-920.

Gilmore, J. F. (1985). "Military Applications of Expert Systems," Future Generations

Computer Systems 1(6), 403-410.

31



Hayes-Roth, F. (1984). "The Knowledge-Based Expert System: A Tutorial," Computer

17(9), 11-28.

Kitzmiller, C. T., J. S. Kowalik (1987). "Coupling Symbolic and Numeric Computing in

KB Systems," Al Magazine 8(2), 85-90.

Klahr, P. (1980). "Knowledge-Based Simulation," Proceedings of the First Annual

National Conference on Artificial Intelligence, Palo Alto, California, 181-183.

Kornell, J. (1987). "Reflections on Using Knowledge Based Systems for Military

Simulation," Simulation 48(4), 144-148.

Laffey, T. J., P. D. Cox, J. L. Schmidt, S. M. Kao, J. Y. Read (1988). "Real-Time

Knowledge-Based Systems," AI Magazine 9(l), 27-45.

McGracken, D., M. Jackson (1982). "Life Cycle Concept Considered Harmful,"

Software Engineering Notes 7(2). 31.

Mettrey, W. (1987). "An Assessment of Tools for Building Large Knowledge-Based

Systems," AI Magazine 8(4, 81-89.

Michaelson, R. H., D. Michie, A. Boulanger (1985). "The Technology of Expert

Systems," Byte Magazine 1Q(4, 303-314.

Minsky, M. (1975). "A Framework for Representing Knowledge," in The Psychology of

Computer Vision, P. Winston, ed. (McGraw-Hill Book Co., Inc., New York).

NASA Johnson Space Center (1987). CLIPS Reference Manual, Artificial Intelligence

Section, Houston, Texas.

Newell, A. (1962). "Learning, Generality, and Problem Solving Programs," Rand

Memorandum RM-3283-PR, Rand Corp., Santa Monica, California.

Nilsson, N. J. (1980). Principles of Artificial Intelligence (Tioga Press, Palo Alto,

California).

32



Niwa, K., Iham Sasaki (1984). "An Experimental Comparison of Knowledge

Representation Schemes," Al Magazine 5(21, 29-37.

Porter, B. W., R. E. Bareiss (1986). "PROTOS: An Experiment in Knowledge

Acquisition for Heuristic Classification Tasks," Al Technical Report (Al TR 86-35)

Artificial Intelligence Laboratory, The University of Texas at Austin.

Ramsey, C. L., J. A. Reggia, D. S. Nau, A. Ferrentino (1986). "A Comparative

Analysis of Methods for Expert Systems," International Journal of Man-Machine
Studies 24, 475-499.

Rich, E. (1983). Artificial Intelligence (McGraw-Hill Book Co., Inc., New York).

Robinson, J. A. (1965). "A Machine Oriented Logic Based on the Resolution Principle,"

Assoc. for Computing Machinery 12(1), 23-41.

Schar, S. (1988). "Intelligent Databases," Database Programming and Design 1(6),

46-53.

Shore, J. (1985). The Sachertorte Algorithm (Viking Press, New York).

Shortliffe, E. H. (1976). Computer-Based Medical Consultation: MYCIN (American

Elsevier, New York).

Sorrells, M. E. (1985). "A Time-Constrained Inference Strategy for Real-Time Expert

Systems," IEEE National Aeronautics and Electronics Conference, Dayton, Ohio.

Stefik, M., J. Aikens, R. Balzer, J. Benoit, L Birnbaum, F. Hayes-Roth, E. Sacerdot

(1983). "Basic Concepts for Building Expert Systems," in Building Expert Systems

F. Hayes-Roth et al., eds. (Addison-Wesley, Reading, Massachusetts), 59-86.

Takenouchi, H., Y. Iwashata (1987). "An Integrated Knowledge Representation

Schemes," Al Magazine 5(2), 29-37.

Te'knowledge (1986). "S. I Development Reference Manual," Palo Alto, California.

33



Van De Reit, R. P. (1987). "Problems with Expert Systems?", Future Generations

Computer Systems 3, 11-16.

van Melle, W. (1979). "A Domain-Independent Production-Rule System for Consultation

Programs," Proceedings of the Sixth International Joint Conference on Artificial

Intelligence, 923-925.

Weiss, S. M., C. A. Kulikowski, A. Safir (1978). "A Model-Based Consultation System

for the Long Term Management of Glaucoma," Proceedings of the Fifth International

Joint Conference on Artificial Intelligence, 826-832.

Weiss, S. M., C. A. Kulikowski (1979). "EXPERT: A System for Developing

Consultation Models," Proceedings of the Sixth Annual Conference on Artificial

Intelligence, 942-947.

34



30 May 1989

DISTRIBUTION LIST FOR
ARL-TR-89-32

UNDER ARL:UT INDEPENDENT RESEARCH
AND DEVELOPMENT PROGRAM

Commander
TEXCOM Field Artillery Board
1655E Randolf Road
Fort Sill
Lawton, OK 73505-6100

1 Attn: N. Bonacci (ATSD)
2 COL Elder (ATZR-BDP)
3 L. Riley (TDSTD)

Commander
Department of the Army
TEXCOM
Fort Hood, TX 76544-5065

4 Atm: H. Menefee (ATCT-I-D)
5 R. Bum (ATCT-I-D)

Commander
TEXCOM Intelligence and Security Board
Hayes Hall, Fort Huachuca
Sierra Vista, AZ 85613

6 Attn: W. Woolverton (ATSI-BT-T)
D. Sabalos (ATSI-BD-AM)

President
TEXCOM Air Defense Artillery Board
Building 1656
Fort Bliss, TX 79916

7-8 Atm: C. Weaver (ATCT-ADA)

Commanding Officer
Naval Ocean Research and Development Activity
Stennis Space Center, MS 39529-5000

9 Atm: Library

Office of the Chief of Naval Research
Department of the Navy
Arlington, VA 22217-5000

10 Attn: M. Orr
11 Library

Office of the Chief of Naval Research
Office of Naval Technology
Department of the Navy
Arlington, VA 22217-5000

12 Atm: Library

35



Distribution List for ARL-TR-89-32 under ARL:UT Independent Research and
Development Program
(cont'd)

Commander
Space and Naval Warfare Systems Command
Department of the Navy
Washington, D.C. 20363-5100

13 Attn: L. Parish (PMW180)
14 K. Evans (PMW180-4)

Commander
Naval Sea Systems Command
Department of the Navy
Washington, D.C. 20362-5101

15 Atm: E. Plummer (Code 63D 1)

Commander
Naval Air Systems Command
Department of the Navy
Washington, D.C. 20361-5460

16 Atm: Code 933B

Director
Naval Research Laboratory
Washington, D.C. 20375

17 Atm: Library

Commanding Officer
Naval Ocean Systems Center
San Diego, CA 92152-5000

18 Atm: D. Hanna (Code 702)
19 G. Walt (Code 723)
20 Library

Commander
Naval Surface Warfare Center
White Oak Laboratory
Silver Spring, MD 20910

21 Atm: Library

Commander
David Taylor Research Center
Bethesda, MD 20084

22 Atm: Library

Commanding Officer
Naval Oceanographic Office
Stennis Space Center, MS 39522-5001

23 Attn: Library

36



Distribution List for ARL-TR-89-32 under ARL:UT Independent Research and
Development Program
(cont'd)

Commanding Officer
Naval Air Development Center
Warminster, PA 18974

24 Atn: Library

Officer in Charge
Naval Underwater Systems Center
New London Laboratory
New London, CT 06320

25 Atn: Library

Superintendent
Naval Postgraduate School
Monterey, CA 93943

26 Atn: Library

Commanding Officer
Naval Coastal Systems Center
Panama City, FL 32407

27 Atm: Library

Defense Advanced Research Projects Agency
Arlington, VA 22209

28 Atm: C. Stuart

29 Commanding Officer
Naval Intelligence Support Center
Washington, D.C. 20390

30 - 41 Commanding Officer and Director
Defense Technical Information Center
Cameron Station, Building 5
5010 Duke Street
Alexandria, VA 22314

42 Applied Research Laboratory
The Pennsylvania State University
P.O. Box 30
State College, PA 16801
Atn: R. Stern

43 Applied Physics Laboratory
The University of Washington
1013 N.E. 40 St.
Seattle, WA 98105
Attn: J. Harlett

37



Distribution List for ARL-TR-89-32 under ARL:UT Independent Research and
Development Program
(cont'd)

Marine Physical Laboratory
Scripps Institution of Oceanography
The University of California, San Diego
San Diego, CA 92093

44 Atm: F. H. Fisher

Bell Telephone Laboratories, Inc.
Whippany Road
Whippany, NJ 07961

45 Attn: Library

46 Tactical Systems Division, ARL:UT

47 Electromagnetics Group, ARL:UT

48 Garland R. Barnard, ARL:UT

49 David A. Brant, ARL:UT

50 James K. Kroger, ARL:UT

51 Thomas A. Griffy, ARL:UT

52 Library, ARL:UT

53 - 82 Reserve, ARL:UT

38


